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l, Outline of Problem,

One of the striking results of modern astrophysics 1s the
ubigquity of magnetic flelds in the universe, t przsent we kiow
a large number of stars with magnetic flelds of the order cof sev-

k and Cowling, 1953} A rather lerge

eral thousand gauss {Babcoc

fraction of them, if not all, have vsariable flelds, so much so

of magnetic stars. Moreover, there 1s evidence that the clouds
of rasrefied gas which are found 1In gglactic space carry magnet:ic
flelds, The most successful theories of the crigin cof cosmic
rays seem to be those that assume the acceleratlon of cosmic-
ray particles to be causad by the mean actlon of thess fields
(Fermi, 1949y Morrison, Clbert, and Rossi, 1954),

Th-+ theory of hydromagnetism, or magnetohydrodynamics?

-

L i Y
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J
these cosmic magnetic flelds, and 1t bids fair to provide such an
explanation. As we shall see (Sec. 4) smell stray magnetic fields

can be amplified by the actlion of suitavle fiuid motions. Now

£luids of large dimenslons are g® g rule highly turbulent. One

"
s

ight thorefore expect the velocity distribution of these fluids

llow somo statistical pattsrn, go that the gmplification of

+h
[¢]

to
stray magnetic fields may be determined from statistical prin-

cipless The final result of such randomly disfributed

*The woirds hydromagnetism and magnestohydrodynamics,
and the corrssponding adjsctives have been used rather indis-
criminagtely in the litsrature. We are using here the former
term for aesthetic reasons and gs being more economical of space.
This usage has the agpprcval of the distingulshed Secretary of
the American Physical Soclety.

o~ .,
OEcH

that one is temptsd tc consider variagbllity as an Intrinsic fsature !
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amplificatory processes would then be a statistical equilibrium
between the turbulent motion and the more ci less 1irregular meg-
netvic fislds generated. This is ths approach taken by Batchelor
(1950) who succeedui in estimating the magnetic spectrum that
wounld te in equilibrium with the velocity spectfum of turculence,
Such a picture gives us s first insight into the mechanism of
the generation of magnetic flelds under the conditicns studied
by the astrophysicist. It indicated imn a provislonal fgshion st
least, that the hydromagnetic theory can account for the presencs
of magnetic fields in the universe without ad hoc gssumptions;
the generation of magnetic flelds of the order of magnitude ob-
served follows without difficulty from the gpplication of
Mgxwell'!s electromagnetic field equatvlons to moving, electriczlly

conducting fluids of large dimensions (Sec. 2).

rron this viewpoirt the older experiences regarding
raguevic flelds of toe earth and the sun appear 1n a new light.
They are taken{out of their conceptugl I1solation and agprear g=
speclal cases, reiatively more accessibie to our observation, of
a universal phenomencne. The pertinent facts concerning the
earthts intericr which form the physical background for the
earth's magnetic fleld have been reviewed in detall some years
ago (Elsasser, 1950). We shall confine ourselves here to a few
words, The earth has been shown from seismological observations
to have a liquid core set off from its outer, solid part by a
sharp surface of discontlinuity. The radius of the coras is about
3500 Mm, corresponding to 55% of the earth's radius. Geochemicgl

evidence indicstes that thc material constituting the core is

primarily mclten Iron with perhaps an admixture of nickel and
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possibly some minor constituents in solution. In ordsr to apply
hydromagne tic- theory. to the earthis core 1t suffices to assume
that the materiagl is a good electrical conduector, 1ts conductlvity
being comparable at least in order of magnlituds to that of ordinary
metals. Beyond this it is merely nccessary to assume that the
core 1s fluid and that internal motions occur. The geomagnetic
secular variation puts the fluid charscter of the @ore in evi-
dence., The secular variation may be analyzed into a spectrum
whose prime components have periods of the order of a few hundred
years. There 1s no known way of accounting for periods of this
order on the basis of mechanical; thermai or other processes
occuring in the solid outer parts of the earthywhereas the theory
which assumes this secular varliation to be assoclated with fluid
mctions in the earth's core is gble to explain them guite satis-
Tactorily (Elsasser, 1950). _In the present review we shall not yet
discuss these phenomena in detaill (althougl: they are well suited
to compare the theory in a quantitative fashion with direct
observations), Instead, we shall focus our attenticn on the basic
hydromagnetic processes by which the earth's dipole field is
Beneratsd and maintained. These processes are nct nscessarily
the ones which are most directly revealed by the secular variations
they take place in the deeper parts of the earth's core, whereas
the geomagnetic secular varlation may be shown to inform us only
about the conditicns in a very shallow layer of fluid gdjacent
to the surface of the core.

The driving mechanism by which the fluid motion, ard hence
indircctly the magnetic field, 1s maintained 1s generally assumed

to be thermal convection (Bullard, 1949 although convective
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motion induced by other mesns, in particular progressive sedi-

radansainacee e LUEL

mentation (Urey, 1952) need not be rejecteds In any event, the
power surplied from thermal sources (r:udloactive hezt in the core,

plausible radigl temperature gradients) is, even under very con-

dervative assumptions, more Uiwn sSufficient tc maintain

throughout the lifetime of the sarth fluid motlons of the mag-

nitude inferred from the observed secular varisition {C.1l-1
mm/sec). The detalls ¢f the primary driving mechanism need not
concern us in this reviews 1t will appear, however (Sec. 5) that

the fluid mctions must be essentlially threse-dimensionalj a pattern

TE Tt e Tl LR L ed n

» ©«8., to spherical sheets or to meridional planes 1s

not adequate to produce dynamo actlicn. Recent selsmologlcsal re-
search (Bullen, 1554) makes it likely that the central part of

the cora is agaln solid, but the volume of thls 1lnner, solid

sphere 1is only a very small fractlon oi the entire volume cf the
core, and for the purposes of the analysis given below it will
bé sufficisnt t¢ assume the earth'!s core «3 a homogeneous fluid
spher=, Compressibility effects are not likely to be important
and so theflulddéare may be considered as incompressibley moreover
the electrical conduetivity will be assumed constant.

There 1s another class of extenslvely studled phenomena
which can be attributed to hydromagnetic effects, namely, the mag-
n2tic filelds observed on the sun, particularly.in sunspots.

Every sunspot has a magnetic fi31ld assoclisted with i1t3; the larger
. the spots, the larger as a rule the fields. The field strength
in the larger spots goes up to a sstursaiion value cf agbout
3000 gauss with a margin of fluctugtion of nearly + 1000 gauss.- Sun-
spots appear very frequently in pa.rs, the lire connecting the

twe spots running in an east-westerly direction, along a circls
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cf latitude, The two members of a sunspot palr glways have op-
posite magnetic polarity. The "leader® spot (ths cne appearing a-
head in the sense of the solar rotation) alweys has one definite pol-
arity during one and the same sunspot cycle, the "follower" having
the oppcsite polarity. Ths ls ader 1s in the aversge larger and has a
larger magnetic field than the follower3 single spots as a rule have
the s ame magnetic polarity as the leader spots. Sunspots appear and
grow to their fulil size iIn the course of a few dayss they then gradu-
ally decay during the course of z fecw weeks, some of them persisting
over & few months. The solar latitude at which the spots are seen is
a function of the 11 1/2-year sunspot cycle. In the beginning of
the cycle the spots appear at a latitude of sborut 30°, As the sun-
spot cycle progresses the spots appear at lower and lower latitudaes
until tcwards the end cf the cycle they are found very nesar the solar
equator, at latitudss of 5-10°, At the same tims new spots bszin to
appear around the latitude of 300, but these spots have opposite mag-
netic polarities. DPuring the entire subsequent cycle the polarity of
the spots 1is the opﬁosite of that found in the previcus cyclej for the
next 11 1/2-yesar cvecls ths polarity reversss again, and so on. Clearly
the complete sunspot cycle must contaln the reversal of the [isld,
and extends over 23 years. There are many other observations that
indicate the presence of magnetic flelds in the sun cther than
sunspot fields and the general character of these filelds gppearsyg
to vary with the sunspot cycle, but these fields are very much
smeller in magnitude than che sunspot fields, We may refer here
to a very comprehensive recent work on the sun (Ruiper, ed., 1953),
Let us now return to our initial remark that magnstic

fields in cosmic fluids may be produced by amplification from



7=

small initisl £ieslds. We referrad to turbulence ss being able to
generate such flelds in & statistical manner. Now while the earth's
field is highly irregular in the detall=. Uy far the largest part

of the field has the form of a dipole roughly paraliel to the
earth's axis., The prominent fesature of sclar magnetism 1s the
23-year cycle which, while subject to fluctuations in streng;h

and glso to certain fluctuaticns Iin iength, has been observed to
occur with conslistent regularity over the last 200 years, and there
18 no reason to doubt that 1t is a relatively stable featurse of

solar activity. Similarly, when stars are observed to have over-

11

5
fto

elds of seversal thousand gauss, a systematlic cause must be

m

(&]

sperative. It 1s clear that 1f the observed phenomena are to be
explained by hydromagnsticz *mplificagion, some regularity of

the pattern of fluid motion must underly them. Fluid motions which
produce relafively statlohary or periodic magnetic fields will

be designated as hydromagnetic dynamscs. Since fluid motions in
loarge dimensions are turbulent, < at i®ast more cr less irrsgular,
we shall not be concerned with rigorous solutions of the hydro-
magnetic equations, but with typical solutions which demonstiratie
the stability of the fields in the mean. <This point of view is
irx. full agreement wiih the observations which show that none of
tne observed parameters of the fleld 1s rigorously constantg

all of them are subject tc certain rather appreciable marginsz

of fluctuaticns. As an example of this we may mention that the
earth's dipole momsnt has decreased by about 5% since 1850
(Elsasser, 1950) although other observational data leave no doubht
that the earth must have possessed a magnetic dipole moment £or a

vory long time 1indeed, so that the present decline 1s in alil
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likelihood only a temporary fluctuation. A disregard of these
pronouncedly irregular fluctustions cof the Iield has led to the
so-called "fundamental®™ theoriss which try to relate gecmagnetism
and cthsr cosmic magnetic phenomena to properties of matter in

the lergs not contained in ths conventional eguations of classical
physics. The hydromagnetic theory shows that classical physics
can account for these phenomena, but that ths particular para-
meters or combiration of parameters have, for good and sufficient
reason, escaped observation in the laboratory (Sec. 2).

The dynamo theory requires that the fluid motlons exhlbit
certain regularities in order that magnetic fields uizy be main-
tained in the average. In other words, there must be some order-
ing principle that controls the fluid motiong, and we must identify
this principle. Cne's first idea would seem to be a search for
arguments of symmetry: t6 find Some symmetry requirement that
restricts the generality of the fiuid motions and impresses uvon
them a relatively simple pzttern. But such a search preves o be
in vain. There is every indication that an appreciable degree
of symmetry of the fluid motions will suppress or cancsl the
effects of hydromasgnetic amplification (Sec. 5)3 thus we are
led to look for patterns of the fluid motion of a low rather than
a high dagree of symmetry. To make & luong story short, the order-
ing principle which ergenders the most conspicuous hydromagnetic
effects may be identified as the Coriolis force acting upon the
fluid motions in a rotating system. Such is the working hypothesds
of this paper. The Coriolis deflection affects the fiuld motions
in such a fashion that the resulting pattern does not In general

admit of any symmetry operations. S8tationary or periodic
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hydromagnetic emplification is thus related to the rstation of
the fluid mass in which it occurs. There is some observationsal
presumption in favor of this 1dea, slince the stars with strong
magnetic filelde seom to rotate rather rapidly. The evidence tis,
however, not entirely conclusive and the assumption must bs jus-
tified by working out 1its dynamical consequencesy we mignt remark
that we are not informed of any other dynamical principle which
could be egdduced to explain magnetic I'lelds of tlie type observed,

i
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electromagnetic fields will be assumed to obay Maxwsll's equations,

hence the material medium may at any point be described by the

R —————— et L R ’

three constants ¢, u, £€. We Bhall assume p and € as constant
throughout space and shall for gimplicity assume g~ constant for a
given Tfiuid, alithough it would not be Aifficult to gensrelize the

theory to fluids with variable o« Ws then have

Vxg=-38/t, V.E=1/k (2.1)

: V.p=o0 » VxB=upl ' (2.2)

where )2, g~are charge and current density. Next we write down
the most gensral expression for the current density admissible in

Maxwelliis theorx

= {
{ J=cE +ox x’_g‘+ ga_g/at + nv {2.3)
u where v 1s the material velocity of the fluid and where the terms

on tha right represent, respsctively, the conduction current, the

induction curreint, ths displacement current, and the convection

P

i currsnt. Formula [(2.3) differs from the conventional exprzssion

. for the toﬁal current by the second and fourth terms on the right
which contain the fluid veloecity, v. For the deiailed derivation
of these terms any extensive text on slectrodynamics may be

. consulted,

We 3hall now proceed to show that the last two terms of

(243) are negligibly smgll under the conditions met with in cosmic
fluids., We 2hall use bracss, { } s to designute the order of

magnitude of a given physical quantity; let In particular {_k}
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stand for a typical length and %w} for a typlcal reciprocal time,
We f'irst note that i
{v/c} = {B} <401 (2e4)
. 5iixce the velocities of cosmic fluids rarely exceed a few km/sec.
We now ccmpare the displacement current; the third term on the

right-hand side of (2.3), to the conduction current, the first

terms The ratio 1is
e/} = (v} (245)
- £y q .
where Y 1s excssdingly small. To shew this, let 0 = 10°, the

conductivity of ordinary irong then for ¥ = 1 we find w::?lols.

This shows that for the frequencies of gll macroscopic motions

¥ 1is utterly negligible. (The quantity (2.5) is familiar to the
student c¢f metal cptics where it 1s used in the same way as here,

. namely, to measure the ratio of displacement to conduction current,)
It is readily.shcwn that the ratio of convection current to con-
duction current is also given by {(2.5). ¥rom {2.1) ve have Iindeed

| . )

! My = {éE/X} s hence this ratic is

{hvieE) = {e vor} = {r} (2.6)
1f we 1dentify @ = v/A as a typical frequency of the material
motion of the fluid.

We next find for the ratio of the electrical to ths
magnetic field energy, using (2.1)
2 .2
Ee/ulzv {W/v } = (lemz/c} = {ps (2.7)
if we again ldentify Aw with the velocity of the fluid, as is
proper in an entirely Maxwellian scheme. Hence the electrostatic

field energy is small and it follows from femilisr arguments that

in our approximation all eleciromagnetic processes are gpaerliodic,

W e s i



These estimates call for some further comments. We see

from the numer.cal estimate of ) that even for a modsratsly ion-

2

ized gas the electromagnetic phenomena are gperlodic for freguencles

e

in the radio spectrum. Thus plzsma oscillations at these fre-
quencies require that the description in terms of the macroscopic
equations of Maxwell!s theory be invaiid; this is because (2.7)
becomes Invelid for the velornity of the electironlc component of
the plasma.L In the present article we are dealing, howsver, <aly
with the macroscopic, average motions of the conducting materialy
he characteristic frequencles are then lower by many péwers of
ten than the frequencies of the radio spectrum; hence (2.5),

(2.6) and (2.7) are certainly smalil and our approximation may safely

be applied. Now (2.2) and (2.3) give

V % B = wE+ poy x B (2.3)
Continuing our dimensionel analysis {Elsasser, 1554) we

compare the order of msagnitude of the three terms in (2.8). We

first notice that by virtue of (2.7) the two terms on the right

hand side are of comparable order of magnitude. The ratio of anv

one of these terms tc the net current on the left is
(weAv ] = {R Y, (2.9)
L J ) i
where tile non-dimsiisional quantity Rm will be designated as the

magnatic Revynolds numbsesr. If we substitute numerical wvalues for

the quantities on the left of (2.,9) we find that Rm is numericallr
large for cosmic fluids. It 1is of the order of magnitude of sev-
eral hundred to parhaps a thousand for the earth's metglilic core,
depending on the detailed assumptions made, and is of order 105

or more for most gstrophysical conditions. This constitutes the



s88entlial difference of cosmic hydromasgnetism from laboratory con-
ditions where, as one readily verifles, Rm 1s numerically small.
Hance
B ~ «v X B ' (2.10])
A —~ e
and the mochanism wherchy the magnetic field is maintained is
quite at varlance from the conventional situaticn where the net
current 1s the scource of B.

Operating with the curl on (2.8) and using the fleld

equations we eliminate E and find

2
3B/3t = Vx (vxB)+v VB (2.11)
where we have written
v_ = (po)7t (2.12)
m [ ]

The quantity v, will be designated as the magnetic viscosity.

We ses from (2.9) that Rm differs from the conventlonal hydro-~
dynamic Reynolds number, R, only in that v, replaces the kine-
ticasl viscosity, v, of the flulld. l

The physical implications of (2.11) are best brought out
in terms of an integral equaticn. To obtain 1t we integrate (2.1)

along a contour € and use (2.8): then by Stokes' theorem
(3/3t)/B de = =/B + dC

=/(vxB) - d - v /(V xB) - dc_

A~

Now 1f the first integrand ¢n the right-hand side is written
B (dg_x‘x), the 1ntegrai can be glven a simple geometrical
meaning: it becomes ﬁ/BndG" where the integration extends over
the strip that the contour C subtends in its motion during the

time di., Since /Bndﬁ” = 0 for any closed surface, we can write
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this
(d/at)/B 00 = -v_/(V x B) - dg (2.13)

On the laft there aprears now the substantigl derivativee refer-
ring to metion With the fluld particles. Clearly, 1f (2.13) is
applied to any arbitrary contour, 1t 1s equivalent to the dif-
ferential equation (2.11}.

Next *ake the ratio of the left-hand side ofv(2.15) to
the right-hand side. This ratio 1s readily ssen from (2,12) and
(2.9) to be just {R_z. Hence under geophysical and astroph&sical

i )

conditions we have very approximately

(d/at)/B de = © (2.14)
which 1s usually enuncisted by stafing that the mggnetlc lines of
force are carried along bodlly with the fluilds they are "frozen"
a8 it were, 1n the conducting fluid. On applying a welllknown '
vector 1dentity to the first term on the right of (2.11) we

obtaln the diffsrential equation In the form
= . . 2
dg/at = (B * V)x - B(V - y) ¢+ v VB

which nay be further simplified on introducing from the equatlon

of continuity

Vev=p af t)/at
with ths result |
a¢tp)/at = (¢ 7l - Wy + $7H V3 (2.15)
an equation that exhlibits more clearly the role of compressibillitiy
(Trussdell, 1250).
This equation is remarkskle in that 1t shows a complete
formal analogy to the Heimholtz theorem of the conservation of

vorticity. Indeed, if we replace B by the vorticity vsctor aad
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v, by v, (2.15) becomes just ths general vorticity-conservation
theorem. The physicel implicaiions of this result for the tubes
of vorticity, which now may be transferred at once to tha tubes of
magnetic flux, are well enough known and may be found in almost
any text orn hydrodynamics. There is one point, however, where a
great deal of misunderstanding appears to exist in the literature:
One has become habituated tc sayirg that not only must {fiux be
congervad during the motion (for vanishing v or vm) but thet also
the lines of vorticity or of the magnetic field must be closed

in the absencs of sources. From the exlisting discussions one is
often led to the implicit belief that the condition V « B = 0

requires that the magnetic lines of force must be closed curves,

&£

This statement 1s certainly incorrect. The subject has recently
besn studied in some detail by McDonald (1954). He shows that
there are two conditions under which the field lines are not
closed. Iin this first place they can terminate in singularities
that is points, lines, or surfaces where B = 0. Examples of or-
dinary current configurations where such singularities appear can
be constructed in abundancej similarly such singularities may be
present in problems.of hydromagnetism. A second class of non-
clozsed lines 1s that of lines whdch are "ergodic", that 1s cover
a reglon everywhere densely. As an example for the latter, con-
sider a current system consisting of a straight current-carrying
wire and a seccné wire forming a circular loop which 1iss in sz
plane normai to the stralght wire with 1ts center on the latter.
The lines of force In the neighburhood of the loop are clearly
spiralsy a llne going through a given pcint will be closed unly

when the ratic of the currents flowing in the two wires has
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cortain rational vealues, otherwlse the line will fill a tvorus-

shaped surface everywhere dersely. It cannot be our alm to con-

*{w'l,ﬂ*”!\rﬂ. T

sider in detall these somewhut Involved properties of fleld linss

which psrtain to analytical vector geometry and are of more in-

tereat perhaps to the topologist than to the physicist, One meay

readily perceivs, even without delving into more rigorous mathe-

TR MRS T R T 7L 57 T T TV 2N T IR R P2 e ¢

matics, that the closed lines of forcs form, set-theoretically

spesking, only a subset of meadure

3

ero of the set of all possible

{

ield lines.

One thing stands out clearly: #Intuitive" arguments

regarding the exlstence of closed lines of force and the impos-

8ibility of generating new closed lines by deformation of the
1143 are of no value. They cannot be used as arguments in a

discussion of hydromagnetic amplification unless they can be

converted into formulias based on the vector-fleld equations of the

theory. Much unjustified scepticism ggainst the resality of hydro-
magnetic processes has arisen from such intuitive reasoning. It
can be avoided only on abandoning ths line-of-force concept of
elementary textbooks in favor of the theory, at the same time mors
rigorous and nore simple, of vector densitles or fluxes, which is
Implied by the fileld equations,

Returning now to the equation (2.11) we see readily that
the ratio of the first to the second term on the right-hand side
12 ggain {Rm}. This 1s completely analogous to conventional
hydrodyiiamics where the ratis of the dynamical to the frictional
terms is {R)e There is this difference in practice, namely, that
we can on occasion reslize fairly higk values of R in the Yaboratcery,

whereas with convsntlional materials Rm remains




ct
«
[«]
P
b

Smell; hence while we are familiar with turbulence, we are no

-

YV = (A = (e fon ) {2 =
{RmJ i'/l\.wd) (lwv/u)dj (ZeliG)

[

where 04 is g characteristic frequency of the free decay of the
fleld in the absence of motion and W, 18 characteristic of ths
fluid motions. We see here the physical basis of a dynamo theory:
for sufficiently large Rm the magnetic field can be deformed
{amplified) by the fluild motion before it has had time to decay.
It remains for the dynamo theory to show that the deformation can
occur in a sufficiently orderéd fashion so that a mean magnetic
field can survive.

Next, consider the mechanical motion of the fluid. From
conventlional slsctromagnetic thsory we have for the dansity of the

ponderomotive force of the magnoatic field

AR

F=3xB=p NV xB)xB (2.17)
The corresponding forces of the electrostatic field are

small by tlie same arguments as before. The force (2.17) will appear
In the Stokes-Navier equations for the fluid mction. Using the

well-known vector identity
(V xp) 3= (B VB - zViE" (2.18)

we shgll write these equations in the form

-V + #wHe - VB + vUPy (2.120)

P

Qg/bt + (z . Vv

where wo hagve set

¢ =p + U + (2p) 1%

———~

(2.20)
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U bsing the gravitational potentisl., The equations (2.11) ard
(2.19) together with such subsidiary conditiocns gs an equation of

state, determins the dynamics of a cosmic fluid in which magnetic

: fields sare present.

In the case of incompressibility, §;7'.X.= 0, this system
admits of a remarkable symmetrizstion which puts in evidence the
analogous roles of B and v in the theory. Letting

i 1
£=z+(?p)~§£’ Q=v-(u)“B

e
Aot o

2vl =V 4+ vV

= - '
b 5 2v2 v Vi

we cobtain, on adding or subtracting (2.11) and (2.19)

a‘z/at + (9: . V)E = -V’\Ip +V2(vlf_+ V;g.__)

, (2.+21)
2/t + (2 - V)= -V« VErna + vh)
) wnere now (2.,20) becomes
v =5+ v+ (p-°s (2.22)

Thess equations were derived by Lundquist (1952) independently of
the author (1950a). The symmetry of these equai.:u3 mimg:: bLe

somewhat misleading: thus we notice that v, becomes negative When

electromagnetic dissipation outweighs frictional dissipation, a

Fact that has no anaslog in ordinary hydrndynamics. The ratilo
v/'vm = Rm/R = po- v (2.23)

may be estimated from elemsntary kinetic theory for an ionized
Zas such as hydrogen (Elsasser, 1954)., One finds the numerical
value

pov = 210 %
where a is the degree of ionization, f the density in mks units.

This shows that electromaguetic dissipation cutweighs Irictional




loss in the intericr of the stars where ¥ is moderataeiy large,
whereas in the rarefled intragalactic msdium, and also in regicns
such a8 the solar chromosphere or corona the electromagnetic loss

3 18 nagllizibls comparazd ' to the los

2

by machgnical wiscogity
We next turn to the conservation laws, It may readily be

shown that neither energy nor vorticity is conserved for the fiuid

motion slone. The wari: done by the fluid 1s just the negative of

the work done by the ponderomotive force (2.17). The power del-

ivered per unit volume 1s thus

Y«.F=p vzxB- (VxB) (2.24)

We may of course obtaln the same expression from the magnetic
field equations. On scalar maltiplication of (2.11) with Esand
transformation of the first term cn the right by a well-known
. vector identity we have., neglecting dissipation
(2u)7t3p%/at = WtV - [(yxB)xB ] + W HuxB) - VxB  (2.25)
On integrating over a volume, the first term may be converted into
a surface Integrel and can be made to vanish 1if thq surface 1s
extended to a region where v = O (this term represents essentlally
the Poynting flux, as may be seen by substituting (2.10)). The
last term of (2.25) 1s identical with (2.24).
The cur:l. of‘z does not in general vanish and so there is
transfer of vorticlty between the fluid and the field. This 1is

most convenlently expressed in terme of the Kelvin circulation

theorem of hydrodyngmics. Integrating (2.19) along a clnsed

contour and agaln leaving out the frictionz=l term we obtain

[

Sy - ag = plag - (B - VB

& _. (2.26)
E =p /(V xB)xB " dc » :



It 15 difficult to simplify the righkt-hand side further, vut ws
#hall not be required in the sequel to make explicit use of the

theorem. While all the preceding intsegral theorems are of some

|=do

1terast; the one most significant in
of magnetic flux in the 1imit of small dissipation., given by
(2.)4). We shall make ample use of it later in the application
to the dynamo theorlesy fer further analysis and illustrative
examples we mgy alsoredr the regder to a comprehensive treatment by .
Lundquist {1952).

It is possible to derive the fleld vectors from a vector

potential, though the relationships are slightly different from

those of more conventional electrodynsmics. If we set, as usual

A . E=-33/3t {2.27)

the first equations (2.1) and (2.2) are identically fulfilled.

The second of (2.2) or, rather, (2.8) gives
/et = v x (T x 4) + vmvzé_ (2.28)

We cannot, however, set {7 - A = 0, since the divergence of the

first term on the right of (2.28) does not vanish (see Sec. 3).

We now assume Rm large gnd neglest terms of order Rm-l. The
last term of (2.28) being of this order, we find
3/3t(V + a)= V.e[gx (Vx4 (2.29)

By virtue of (2.10) which alsoc holds apart from terms of order
Rm-l, (2.29) 1s identically fulfilled. Finally, )l 18 deter-
mined from the second of (2.1). Thus the assumptions (2.27) are
Justified In the approximaticn in which electromsgnetic dissi-
pation may be negle cted.

In most &applicatlions it ie possible to ignore the



[
C)

agitudinal (irrotationel) part of E, and hence of A, alto-

gether, since by the first of (2.1) it does not give rise to a

magnetic fileld. If a method is given whereby A may be split

ronaiatantly Intn 1+9 trengvarae (4
into 1ty Traensvearse (Q

L4 . -

vargonca-Trae) and 1ts
longitudinal part (e.g. on vsing a system of normal modes, Sec., 4}
we may re-introduce the condition 7. A = O to supplemeri (2.27).
Since, however, the divergence of the firsi term on the right of
(2.,28) does not in general wvanish (See oyu. J.5) W& must Shen
supplement (2.28) by the condition that only its cransverse com=-
ponent will be taken into account. Since the decomposition of a
vector into its transverse and longitudinal parts is linear, this
can of'ten be done with comparatlve ease.

In the applications to astrophysical pro~ I o= Y
blems both Rm and R are mimerically large. This means not only
that we have turbulence but alsoc that there will ve an entire
hierarchy of eddies, the larger eddles feeding energy into the
smaller ones, sccording to the usual turbulence theory. The
largest eddies correspond to the largest values of R pocsesible,
the smallest eddles correspond to either R ~ 1, or Rmf~* 1s
depending on whichever one of these two numbers is ths larger.
If there is intense transfer of energy between the mechanical and el-
ectranegnetic degrees of freedom, at lesst among the smaller eddies
(Batchelor, 1950) the cutoff of ths turbulence spectrum must be
determined by whatever mechanism of moleculsr dissipation is the
more effective, mechanical friction or Jouleis heat.

In a turbulent fluid the transport of physicali properties

such a8 heat content, momentum, vorticity, and so on, is dster-

mined by the corresponding moleculer coefficientssy the same
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applies to thermgl dissipation. Thus we shall be forcsd to rsplacs

peon

m

v_ by an eddy magnetic viscosity, vm' say, Or else ¢ Dby an eddy
electric conductivity, ¢' . It is well known, of course, that
these quantities are actually functions of the turbulent ats ta,
To exhibit more foimally the magnetic eddy stresses and
the magnetlc eddy diffusivity, we remember that purely mechanicsl
strasses can be expressed as the divergence of a stress tensor
{ssc for instance Sommerfsld, 1950)., We shall assume in the re-
mainder of this section that the fluid 1= incympressiklas. Vs
shall use tersor notaticn in cartesian coordinates., <The mole-
cular vilscous stresses are the divergence cf the tensor,
v(avi/axk + avk/éx,). Again, in a turbulent medium we have the

Reynolds stresses whicli are dsrived as follows: The Euler

equations of the fluid are

av

+}'_v }J;i._ - §—,—:—f (2.30)

a . vy o evy - ov,
E;—‘é'ik‘("i"k) ‘sti;‘k*vizij_k gvksfk

We now set

v, = v,” + v, ¥ (2.31)

4

4

where v° refers to the "smooth" and v¥ to the "turbulent" com-

ponent of the velccity. Ws chooss the decomposition (2 1) 80

thag on aversging over the irregular motion"vilt = 0, hence
—_— [s)
vy vy and

vv_vo O+—g-—-g-_ 00_._S

1 T V4 Vi Vi Vi

whers sik is the Rsynolds stress tensor., If we insert (2.31)
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Into (2.30) and average we obisin
o

av,° v = 38
1 S o © 1 ) Sr' ik
+ v .=-5-35+,__
ot ‘1; k Exk X Exk
Now the ponderomotive force (2.17) may be expressed as
the divergence of a Maxwellian stress tensor (sSee for instnonce
Stratton, 1941). Referring to unit mass, this relation 1s

25

N
[ ]
(<]
to
S’

aT
- = ik m = L =
§ lFi S; &’ ik Fu(34By ~ B704)
Where éik.is the usual Kronecker symbol. We now split B, into
= o * 3
Bi Bi f Bi (2.33)

where the same conditions for the averages hold as for {2.31).

1 P O X 17 T DT I I R T

The equations cof motion bec

o
av v
P PR AR bl -l

12.34)

T BT E N Y
=
-t.
Mo
e
=’
w
[
W
+
F;ti

whers 1in place of (2.20) we have now ?k#’= p + U, the term wi th

‘Q? naving been absorbed Into ths stresses, We See that the mech-

anlcal stresses produced by the turhulant compcnent cf the magnetic

B e s § T e vt 4

field are exactly analogous to the purely mechaniceal s tresses of

turbulence.

ol IS s

A similar uwransformation may ~e effected for the magnetic

field squations (2.11). We note in the first place that

(v o .

1 - h\) = v_ a ’ (s - . 5
L ~ \LABIJi Lk_ r—(xk vibk vkﬁi) (2055)

The parenthesis on the right represents an antisymmetrical

tensor (1t being well known thet any vectorial product may be written
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turbulence only the 4di

as such a tensor). This fegture distinguishss the fleid equations
(2.11) essentially from the sguations of motion in which the stress
tensors, mechanical as well a3 electromagnetic, are symmetrical,

We introduce now the decompesitions (2.31) and (2.33) and let

where I is the antisymmetrical turbulent induction tensor. HNow

(2.11) becomes, on omitting the term in v

’ m
aB,° 3T
—t- = > 2 (v,°8° - v.%8,°) + Zk__ - (2.36)
k Tk - X SR Ry .

where the last term now describes the turbulent diffusion of ihe
magnetic field. It must te emphasized that 1In splie of the super-
ficlal similarity to the lgst term in (2.34) thsrs 1s the funda-
mental difference that ti: Znducticon tensor is antisymmetrical.

In any one sltungtlion we zan reverss ilis ssises of energy transfier
between fluid and field by merely reverzing the directicn € ¥, as
15 appacont from (2.24). Similarly, the sign of ths components of
I depends on correlations batween the components of z'and of B,

and the slgn of these correlations may bs reversed in the same way.

Whereas the stress tensors S and T in (2.11) act in a way quite

anglogousa to molscular viscous stresses; giving rise to irrever-

sible effects only, this cannot be said of the tensor I: the
classical proof of the lrreversibllity of viscous stresses depends

on the symmetry of the stress tensor. For stationary isoctropic

s of the tensors remain, so

that I vanishes In this case. This of course deces not mean that
there ls no vransfer, but that the transfers ir. the opposite

direction balance. We can, however, have a systematlc transfer,
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and of either sign, if the turbulent pattern is sufficiently an-~
isotropic. This question is clescly related to that of eddies
producing feedback in dynamo models which we shall tTake up ln
Sec. 7.

. -
LS

We may ingyulre into the comparative magnitude of
tensors 8, T, I. A number of authors on astrophysical el ectro-
dynanics heve assumed that equipartition holds for the energy, at

least in ~rder of magnitude:

fev?)={u18%) (2.37)
[y J \’ J

In this case it is readily seen from (2.32) that (T} = (YZ; = (Se.

Trhe magnitude of I 18 related (o the Rm of the effective eddies in

the ssmo way in which S and T are related to B. As Betchelor {1850)

points out, the largsst eddlies are driven mechanically and thelr

energy is degraded before they can create an equilibrium magnetic

field of their own dimensionst and of magnitude (2.37)3for the

a8ddies of amgilz- dimensions but above cutoff we may assume such

eauiliibrium to prevall. We would then be gble to estimate that the

ratio of the eddy-stress and eddy-diffusion terms to the dynamical

terms is of comparable order in (2,34) and (2.36)., There is, how-

ever, no basic need tc assume that the equipartition (2.3%7) holds

even approximately in a rotating system. A turbulent regime 1is

not a statistical equiiibrium but a dissipative process, at the

best a stationary one. For an equilibrium the existence of detailed

balancing is a sufficient (though not always a necessary) condition

for equipartition. For non-equilibria the deviations from ths

equilibrium scatistical distribution (equipartition) are 1 arger,

the more the system deviates from detailed balarcing. In a rotating

system the Coriolis force lacks mechanical reciprocity and hence
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the system would not evsn permlt of detalled balancing in a
hypothetical equilibrium. Since the Coriolis force is essential
for the dynsmo mechenlsm which maeintains the magnetic flelds, it
18 prefergble not to have recourse to the equipartition assumption
(2.37) but to tackle the problem from basic dynamical principles,

which i1s what we shall do later on.
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3. Electric Fislds, Potentilals.

We shall now investigate mors clossely the range of validity

H

of our equations. The electromagnetic field equatlions uced wore

those of the conventional Maxwellilan eiscircdynamice of ponderable

i)

bodies. There are certuln observed cosmic phenomena which cannot
be described on this bgsils, in particular radio noise and the

accslsration of cosmic rays, but outside of these thers szxists a

w

trong presumption that these macroscopic lawe shouid hold for

the slow motions and the large dimensions of the flulds considered.
As before, we shall assume that f 1s numerically small and Rm num~
erically large. A question which immedistely posss itself is that

of the magnitude of the electrical effects assoclated with hydro-

magnetic phenomena, end this will now be considered.

It is well known that the electromagnetic field equations
of ponderable todics can be written iIn a relativistically invariant
form (Minkowski's equations, see Von Leus, 1921) Here, however, ws
need only considsr the terms linear in $ and maj neglect &ll higher-
order terme in thic Lorentz transformation. The kinematlical equations

of the Torentz transformation reduce to the simple form
i=r-gyt, t'=t, V' =9, 38t =8/3+v, -V (3.)

where‘go is the velocity of the primed system with respect to the
unprimed one and r the radius vector from the origin.

In the same approximation the field vactors transform as

] 1
E =88+ v_x
L e LY

Introducing liere the assumption that Bm 1s large whica may be

expressed by (2.10) we havs
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t o= = )
E'=E +y, X B, B B (3.2)
1
Ths current density transforms tc J' = J + Y ¥ . Sincs
A~~~ Py ‘v\no

b~ Y =
{’l v /o E} {Y} and {c"E/J} {ng
by the preceding section, we see that 7"30 is small of order me.

Now ¥ 13 so exceedingly small that this product is small for all

regsonshles values of R ¢+ h

anca
m

A=, "= (3.3)

the second eguation following from general principlss of relativitye
a g g y

Furthermore, the conductivity, ¢~ , can be shown to be a Lorentz

invariant from general thermodynamical considerations (Vm Lawe; 3921).

4 +- 4 1 2 ande o2 2 i
It is at cnce scen now that all thes equatic containing Z. al one

o]
(/]

will not change under the transformations ccnsidered, nor wili the
ponderomotive force (2.24).

We next inquire into the space-charge, n_. Ws must have
conservation of c¢harge which, on usiang the full expression (2.3),

may be written

d e
—a—;;:: Vo|:j~‘—£

|

t)=%_}?+ (/"Vo(’y_‘xg)-}v.(yll)

Q)

The last term 1is small and may be neglected, and we are left with

a differential equation for 7,

Ed
ntlcl)y = o

4
o~
<t
~o

(3.4)

where
-f(t)=V~(&x§)=X‘sV x’g—g'vl‘{v (2.5)

do=s not in general vanish. The integral of (3.4) is



n(t) = exp(~c t/€) .é ac £{t)exp(s t/€)

Now the rate of change of £ is determined by the frequencles, w,
of tne fluid motion, and o /£ = "0 << w. On letting therefore
2{t) = f(o) + tf'(o0) the solution becomes, to within terms of the
order of Xﬁ ‘
N (8) = & £(o) + £ t£7(0)
its meaning is apparent: the space éharge is
= =&V e {v 2 B) (3..6)

and as the psrenthesis on tie right changes with time, n follows
this change quesistatically to within terms of the order of )y ,
that 1s synchronously to all practical purposes.

While thus hydromagnetic induction does in genersl produce
a space charge in the conductor, (2.1) shows that the associated,
longitudinal, part of the field does nct affect the rate of change
of Ba Wiith a proper choice of the constants of intsgration we cen
say thaf the longitudinal compcnent of B, whose sources are h,y 18
not accompanied by a magnetic field. a famlliar result of conven-
tional elscirodynamics. Now ws have sssn before that the electrical
energy density 1s small compared to the magnstlic one, and similarly
for the ponderomotive forces, For this reason we are not, in
general, interested in the elecéric fields as such when dealing
with problems of hydromagnetic theory. These fields become of
physical interest only If perchance it can be shown that somewhere
in ths unlverse they give rise to the acceleration cof elementary
particles, a toplc which i3 somewhat beyond ths <¢onfines of our
rresent subject. Thus it is altogether legitimate %o ignore in
the sequel the lcnglitudinal component ofgg, even though 1% is of

the same order of magnitude as the transverse component. If we
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introduce a vector potential wa may correspondingly set W+ A = O,
as We have explained in Se¢. 3, although this divergence is by no
means small compared to xﬁ;&.‘

Cosmic matter is practically never an insulator in which
statlc charges could be maintained over an appreciable length
of time (the case of the formmation of atmospheric thunderstorms
by electrostatic effects belng a notebls exception)s hence there
will be no static charges other than those given by (3.6). It may
be convenient to introduce static charges for mathematlical reasons,
9.8., at the boundgry of a conductor agalnst vacuum.

It is seen, then, that B has both g divergence-free and an
irrotational components the former is given by the first eguation

(

(2.1), the latter can be expressed by (3.5) and the relation

AP,

E= -y x B (3.7)

which holds te within terms of the order of Rm-l. Both com-

pononts are as a rule of comparable order of magnitude. In deal-
ing with prcblems of hydromaginetism, especially ths dynamo theory,
it i3 as s rule more convenlent to work with equations that c¢on-
tain B al one, so that questions concerning the electric fileld
become irrelevant, especlally since the ponderomotive force of
the elsctric field or the electris stress tsnsorsare by (2.7) neg-
ligibly small as compared with the corresponding magnetic quanti-
ties. 1In the hydrcmagnetic phenomena of rarefied gases the electric
fields generated may become Ilmportant Jor the acceleration cf
individual particles (cosmic rays), but these problems are not
within the scope of the present review.

There 1s, however, one point that might be touched upon,

namely the concsptlon advanced by several guthors, that the
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conditions for the accelerstion of particles from thermal, or in
any event small, energies to higher energies are particulsrly
favoreble at so-called 'neutral points". These points are def ined
so that B = 0 in the local frame of refersnce, that is, in a system
of reference in which v. = 0. It is correctly argued that in such

a system the particles move in straight lines and that hence the
conditions fer setting up an electrical discharge are much more
favorable than elsewhere where a discharge 1is quenched by the

magnetlc field (spiralling of the particies which effectively
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mean field &t a neutral point and E the mean field in the fluld,
wa gee from (2.10) that Eo is small, specifically

(Eo} = {E/Rm] = {vB/Rm (3.8)
Since under most astrophysical conditions Rm is qulte large, the
theory of discharges a% neutral points (Dungey, 1953) which at
first sight is very attractive, needs a thorough revision in ths
light of this 1last result.

Previous to the development of hydromsgnetic theory with
its esmplificatory mechanisms, the possibility of moleculear electro-
motive forces as a ceuse of the large-scale slectromagnetic fields
hac often been investigatgd. Thermoelectric potentigls, pote..~
tials caused by pressure differences along a materlal boundary, and
potentials caused by differential diffusion of negative and posi-
tive ions in.a density gradient are typical of the mechanisme
invoked. These theories {(the writer pleads gullty to having once
advanced one) have gll had this in commoa: they use Ohm's law,

s =<F, in plee of (2.8) to compute the currenta, Now 1f we

roeplacs the first equstion (2.1) by



3B/3t = - Vx (E + E,)
Wharelgi 15 the impressed emt, our equation {2.1i) becomes
§~5/at=-Vx (v x B} + vmV?‘}i- v x E; (3.9)

In a vturbulent medium the molecular magnetic dilfusivity must be
repiraced by the eddy diffusivity which is very much largers rougnly,
{vm'} = {Rmvm? (3.10)
By (2.12) this means that the conductivity is increased, or the
resistivity decrsased. This reduces tlhe mggnitude of the fields
generated, both by the first and by the last term on the right of
(3.9). 8ince, however, the existence of turbulence requires that
theré are large-scale motions on which the turbulence feeds, tne
first term on the right. gives rise to large~scale hydromsasgnstic
induction which is reduced but not in general wiped out by the
turbulence, as we shall see in detail later. The effect of im-
pressed emf's 1; different: the statlionary current and the

stationary magnetvic field are establishsd mors rapidly when v
ag

=

g larger, but the field produced by the saturastion current 1s
reduced in magnitude. From the last two terms of (3.9) the

field corrsspcnding to the stationary state is of the order

{Bi} = {mi/vm} (3.11)
and according to (3.10) this field is smaller by a factor R,

nder turbulent conditizns. The theories referred to abcve have

=

had great difficulties in sccounting for an Ei of sufficient mag-

nitude to explsin the oLserved {fislds, and these dif'ficultiss ars

multiplied if the turbulent resistivity is introduced. Mo st mag-

netic fields of large dimensions must be explained by dyramo action,

M



regenerated many times over. Tuere is empirical svidence for thia

in the fact that almost all, if not all, stellar magnetic filelds
are time-dependent {(Babcock and Cowling, 1953). Theorstically,

we must say that the long decay periods for magnetic fislds in
stars, compargble to the age of the universe, which are computed
in the basis of the molecular vm (Cowling, 194%) must be reduced
by a factor'{Rm} which, in stars, 1s likely to amount to g high
power of ten, Clearly, for a dynamo theory the way in which the
magnetic fleld originated at the occasion of the first ampllifi-
catory processes hecomes rather irrelevant as compared to the

mechanism by which fields can be regenerated and maintainsd.
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4. PFree Aperiodic Modes.

The integration of the basic equation (2.11) is difficulit
even wWitn a relatively simple geometry. We shall proceed to
integrate two special cases: the case ¥ = 0, representing free
decay of a current system, essentially in g s011d conductor, and
the case Vi = 0 representing pure hydromsgnetic induction. 1In
this section we treat free decayjy from (2.11l) and (2.12) we
now 3pecialize to. ‘

2B - poap/at = 0 T

' AT g

Tz sclve this equation we use the method of normal modes adapted
to the aperiodic case (Elsasser, 1946/7) which differs in a number
cf particulars from the case of slectromagnstic oscillations
(Stratton, 1941). We set

B(r,t) = B(r)exp(-At) (4.2)

AN = kz/pd" = kavm

so that (4.1) becomes
%R+ ¥°B = 0 (4.4)
both £\ and k being assumed real. We have of course zlsc

V2 + ¥°E = 0 (4.5)

From (4.3) the time of free decay 1is of the grder

() ={a /vms (4.6)

increasing with the square of the linear dimensions. v_ 1is of
the zeneral order of unity (mks) for metallic conductors, per-

mitting a ready sstimsts of th

o

> A 4+ b}
arder of the cecagy times
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times are fictitious, as we have pcinted out betors, since actusglily
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The conventional Scalar wgve equaticn can be eclvsd by
separation of varilatvies 1n 11 diffsrent systems of coordinstes
(Stratton, 1941). From these solutions one obtains sets of crtho-
gonal modes by imposing suitable boundary conditions. For reasons
too corplex to be stated briefly ths method cannot veadily be
extended to the vectorial wave eauationsy both the separation of
variables and the boundary conditions present spscial mathematlcal
difficulties. *Systems of modes can be found for three types of
geometry: plane waves. cylindrical waves and spherical waves. The
theory has grown up in a more or iess ad hoec fashicn, though
Stratton attempts some systematization, followinge arlier work
by Mie, Debys and Hansen. We have tried to develop the method
used to solve the vector wave squation and the formalism rsguired
for boundary conditions and crthogoiiality in a fairly general
fashion, so as to exhibit both the scope and the limitations
of the method. The ensuing formulas may be used in all the known
cases of solutions. We then proceed to construcp)for spherical
boundary conditicns, the sctual solutions and to discuss Indetail

orthogonality and nermalization.

Vector Wave Formalism.

Tn order to construct solutions of the vector wavs

equation we start from the scalar wave equation
2 2 /
V yv+kyp =0 {4.7)

and shall derive from every solution of thls egquation three

associated solutions of the vector wave equation (4.4)s one of
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oy . Y
t=%Yy, VVeg+x0=0 (4.8)

A ? —, _~
Where \y/ 138 any suiitsble solutlon of (4.7)s these ars the long-

itudingl waves of vanishing curi. A second solntion 1s of the rorm
I=V x4z (4.9)
where Z 1s a vector field to be spscified later. A third soluticn,

finally, is
B=V=xL " (4.10)

The vector fields (4.9) and {(4.10) are transverse, of vanishing
divergance. There seemsto be no simple way other than (4.9)
and (4.10) to derive a pair of linearly Independent transverse
vectors from a scalar.

We can rewrite (4.9) as
T=Vp x2+yVxZ (4.11)

On substituting this into (4.10) we find sfter some straight-

forward calculations, using (4.7),
kg = K'ywz + V(V iy 2)
+ VWiV e2) -2y Viz+wVaxVxz (4.12)

Again; since 8 and T are assumea te cbey the wave equation (4.4)

which may be written
VaVzzg-rsg=v, VaVxr-¥x®r=0 (4.13)
we have from {4.10) and the second of (4.13)
Vxg=xr (4.14)

Equations (4.1C) and (4.14) exhibit a characteristic symmetry

between the vectors 8 and T. Next, from {(4.9) and (4.14)



On the other nhand, the curl of (4.12) agrees with (4.15) only

i~

he lasi thraes terms in (4.12) are the gradieant of a scalar.

<t

£
We shall consider Z as a quantity determined by the particular
boundary conditions, hence related to the system of coordinates
chosen, whereas -/ is any one c” a set of orthogonal modes. For
'the present purpose we may therefore assume W/ to be effectively
arbitrary, and Z and \J as independent of each other. It

follows that the last term in (4.12) must be the gradient of a
gcalar in 1tself since 1t contains s whereas the two other
tsrms contain the derivatives of . These two terms both in-
volve V\P; they have arbltrary but in general different dir-
ecticnsi hence each of them must again be the gradient of a scalar

separatuly. From the first and the third of the thrss tesrms thers

Z 18 a iinear function of the cartesian coordinates. GCombining
this with the requirement that the middle term, (V W - v )2
must be a gradieni we find two solutions?i One 1s clearly Z =
conste.y We may for Instance take Z to be a unit vector in the
z-direction. The other solution 18 Z = r, where r 1s the
radius vector from the origin. This latter cholce gives

(V' « V)r = V\p. The former cholce is used with plane anc
cylindrical waves, the cylinder axis being in the z-directiong

the latter is appropriate for sphsrical waves, We then have from

the preceding formulas, for constent Z

I=V\Y¥xz. 8=kyd+k1IV(ay/oz) (2.16)

and for Z = r, in pclar coordinates
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L=VvVy¥ xz, 2=kyr+ k V(a-m.;.//ar, {4.17)
We may summarize the last two formul..8 by
T=VYVyw=z3z, 8=kyz+k V(W) (4.18)

We shall now write down formulas from which the orthogonality
relations of these vector modes may be derived for appropriate
boundary conditions. Individual scalar modes which satisfy (4.5}
will be distinguished by indices, Mg o o o3 the vectior modes
derived from 1 by (4.18) end (4.8) will be desigriated by

Sy * TpdV =SV 2Vp <2 a0 = /Vx (W VV,) * 24V
(4.19)
=/V. [\VIV\,UQ x&jdv = fﬁ“lv‘-/’:a x 2 * ndo

where n is the unit normal to the surfaece, directed outwards.

Next we find, using Green's theoremn

J0y 8ol = i/ Vit B AV + kT SV - Vi) v
(4.20)
= sz‘f’a“—”‘f’l *Zav + kz-lklzfxylx,uzdv + kg-lf(\f/z)'(a\,l/l/an)da'
and finally
[Iy + So® = kT /Vipg) VY 2

=1/ V [(9p) Py 2 ZJeV = 1T 0y 'V 2 2 s paa

Some further fammulas are required for ths o?thog;mality
relatiocns among vectorc of the same type. For the U-vectors we
can transformm the integral over V\}/l -V\yz by means of the
conventiconal Green's theorem &as in (4.20). For the T-vectors we

ind from (4.18)

fiy * DAV = [(Vip VW 22av - /(2 -Thp 1B - VW, )av (4.22)
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relations follow from the vectorial equlvalent of

m

Green's formulas (Stratton, 1941). For two arbitrary vectors,

provided /- B = G,

f[(.‘7 x A){V x B) +AV%§]dV 'A x (V x 2) ¢ ndor(4.23)

which may readily be proved on converting the right-hand side 1nto
a volume integral by Gauss' theorem. The equivalent of Green's

second formula 1is
/[onzg.g-vaé ar = /{Az (V xB) -B=x(V xﬁé)}’dnr(‘i.zli)

nrovided U7 » A = \Vd + B=0, From (4.23) we obtain an expression

relating ths c¢rthogonality of the 8-vectors to that of the T-vectors:

e e ' L] QR.‘
klszgl S,V = I5aV ,,/B T, Aridd" (4.258)

2 l
2"& &oan .
The surfgce integrsasl on the right can be further reduced by means

of the identity, following from (4.18)

f3yx%; ndo =/, - nx 8 4T
(4.26)
=k /W (Vp x Z)+(n x 2)de - k'_{lf(V\f/2 x 2)*{V(\y;)'x n)de

From {4.24) we get the two useful relations

2 .2 . - . o . e v
(k] = k)0 + TV = /[T x 8, - kI, x 8, ]* n as(4.27)
K2 - k2)/8, ¢ 8.4V = [Tk 8 x I, - k8 x T. )] e n dof4,28)
1 < Kpl2y By 224 18p x.Iy J ¢ n dol4.28)

If our conducting body 1s of finite size (rectangular box
or cylindric prism for cartesian coordinates, circular or ellip-
tic cylinder for cyliindrical coordinates, sphere for pnlar
coordinates) we must join our solutions for the inside to the
solutions of Maxweli's equations for free sSpace at the outside.

Assuming thet & and u have the same values inside the conductor
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as outside, the boundary conditions impose centinuity of all field
vectors, except that thsre may be a surface charge, “T, per unit

area 30 that for the normal components

(E

— = T/
n)z)utside (En)inside / (4.29)

In ocuter space we have a {isld which adjusis itselfl
quesistatically to the flelds that prevail at the boundary and
that are ths result of the validity of (4:1) and {2.1) on the
Inside. 8ince the displacement current is negligible, we have

frem (2.1) and (2.2) for the outside field

V=0, UE=0, V-B=0,V +E=0 (4.30)

L

It is8 not, in general, possible to choose boundary con-
éditions for the solutions of the vector wave ejuation such that
a fully orthogonal system of vectors 8, T, U results, The boundary
conditions on \J} are of course determined by the boundary con-
ditlions cf the electromagnetlic fieid quantitiesy it then appears
that "almost" all the modes are mutually orthogonal, but that for
certain pairs of vectors the orthogonality fails (Stratton, 1941),
Fortunately, this fallure is sufficientliy limited so that it does=s
not seriously hamper the use of the formglism for the solution of
our physical problems. There is one case where full orthogonality
obviously obtalns: for planc waves iIn a rectangular box with

cycllic boundary conditions at all faces.

Modes of the Sphera,

Ws shell be principally interested in spherical conductors,

o

We assume uniform conductivity and let R be the radius of the

sphere. We shall assume the outer space to be vacuum. Consider
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first the inside. We have Tor the solutions of {4.7), apart

from an arbitrary constant,

where Jn 1s a sphnerical Bessel function,

1/2
g

i (X) = (1[/23() n+1/2(x)

“n

(4431)

(4.33)

and where the kn8 are determined by the boundary ccnditions,

The Y?l are the conventional surface harmcncis. we now writo

down the e xpressions for the vector modes in polar coordinates in

terms of \V . They are given by (4.8) and by (4.17) which yield

~gr . a"i‘)/ar s o = r-le“lu C -

EQ = (pr sin &,”la\y/bo

This type of mode is purely longlitudinal. Next we have

;Ir =0, 'gtg_a (8in m-)"lagu/ao

Xy ™ -a /8-

This type of mods will be dssignated as toroidal.

S, = kry + l{"']‘az(.ﬂ.'w‘u)/ar2 = n(n+1)(kr)_1\y

8 = (kr)-laz(r\.,u)/araw-

8 = (kr sin &)’laz(ryz)/ara‘«p

This type of mode will be designated as polcidal.

& nutar

]

noera the 1
page e Johels

g~

Finally

14 equetlicns

(4.33)

(4,3%)

(4.35)

o the

vectorial Laplace equaticns (4.30)t the corresponding generating

scalar 1s
_ -n-i.m N
\i/ = C r !n(l.g; @)

P
[5+9

lo}]

—r
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where € =111 be chosen so a3 to assure contlnuity with the inside
solution Ly virtue of the electromagnetlic boundary conditions.

The solution U defined by (4.8) or (4.33) continues to
hold in the l1limit k = O. In the csse of the transverse modes,

however, we must resdefine our expressions sc that (4.35) remains
finite for k = O, This is easily done by comsidsring the vectors
kS and kT in plsce of the above. <Then KT vanishes as k goes to
zero and one readily verifies that.k§.= -nUs this, furthermore,
agra2es with (4.14), namely I = vV x (§/k) = 0, Hence on the
outside there exists only one solution which 1s essentially
16ngitudina1, but may if desired be expresced in terms of a
poloidal vector field with the generating function (4.36).

We shall now construct the free, apericdicslly damped
electromagnetic modes. Again, B, E will designate field vectors
from which the time factor has bsen split off, by (4.2). The
longitudinal modss (4.33) are readily constructed, but they are
purely electrostatic and the corresponding magnetic field vanishes,
As indicated In Sec, 3 they are only cf subordinate interest
for the dynamo problemy their formalism 1s moreover quite
straightforward.

For the transverse modes we have from thie field equaticns

together with (4.2) and (4.3)

VxB=k(uoBk).: V x (uoE/k) = kB (4.37)

If we introduce a vector potential it is related to E by

A~

A=B/A = yog i

The equations (4.37) are identical in form with (4.,10) and

(4.14). Moreover, the vector wave equation (4.13) is &



hers ars two types of transverse

polcidal magnetic modes where B is of type 8.

We first consider the toroidai magnetic modes. To obtain
an idea of their geometry we note from (4.34) that for rotational
symmetry (zonal harmonice) there is only a ¢-componentsy hence the
magnetic lines of force coincide with the clrcles of latitude.
For the toroldal dipole mode‘QQ has the same sign throughout,
whereas for the toroldal quadrupole mode_§¢ cl.anges sign at the
equsatora.

We have seen that the T~vectors vanish identically in
outer space where o~ = 0., Hence the boundary condition is
B = 0 at the suriace cf the conducting sphere, r = R. From

(4.34) and (4.31) this gives the characteristiec equation
t =
J(k R) =0 (4.39)

t

The kns

form e twofold saquence, depending on the "quantum numbers®
n and 8, the latter numbering the successive zeros of jn' The
electric field corresponding to this mode is poloidaly by (4.355)
its wuormal component vanishes at r = R, but the tangentiasl com-
ponents do not in general vanish. We can fuifill the boundary
conditions ty combining an external muliipole field with a suriace

charge defined by (4.29). (It should be pointed out thet the

transverse vector modes start with n = 13 the solutions

gorresponding to n = C vanish,)

We next considsr the poloidal magnetic modes. For zonal

o

harmonics, that is rotationsl symmetry, the magnetic field lines

are confined to the meridional planes. To fulfill the boundary
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condition for B for the genersl mode of this type we must have
continuity of all three cumponents at the surface of the conductor,
It is convenient to express the e xternal multipole field in terms
off%oloidal vectors (4.35) rather than by the longitudinal
U-vectors: we hgve shown above that this is legitimate. Now for
this external field whose generating scalar is (4.36) the relation

of the tangontlal to the normal components o¢f § 18 given by

the internal \¢/ must obpy ths sams conditlon at tho surface,
r = R, that is
[a(rjn) .
<+ =
== * 2| _ 7O (4.40)

This is the characteristic esqualion for these modes which may

readily be transformed into

i .(¥P.R) =0 (4.41)

‘I~ ns

Moreover, if (4.38) is the generating scalar for the external
S-vectors we obtain

3 1
c__ = r"™s (x

. - nsR) (4.42)

''he electric field of these modes 1s pureiy toroidasl. Since there
can be no toroildal field in empty outer space, the boundery con-
ditions for E cannot be fulfilleds in order to satisfy them we
world have to go to g higher-order approximation, Since the
aperiodic modes decay extremely slowly, we could try to fulfiii
the boundary conditions by assuming g minute electrirsl conduc-
tivity in outer space which would make a toroidal elsesctric field
possible and would also correspond fairly closely to geophgsical

and astrophysical conditions. In any svent, the electric field



We next discuss the crthogonality snd normaiizaticn of
the modes, From (4.20) and (4.21) one readily verifies that all
T-.vectors are orthogonal ts sl1 S-veclors over the interior of
the Bphera., Similarly, it follows from {(4.19) thet 11 T-vocitors
are orthogonal to sll U-vectors. The S-vectors are, however, not
orthogonel %o the U-vectoirs (Stratvon, 1941) bnt since we are not
interested in the longitudingl fleld components this fact will
not impede our calculations. Next, considsr the mutusl orthogon-
allty and normalization 8f the torcidsl wmodes., ¥®e¢ introduces the
abbrevistion 7' by

v = r(a/ar) +r v' ( . (4 43)

so that ¥V' 1s a gradient vector along the surface of the unit
sphere., Applying (4.43) snd (4.31) to (4,22) we find

2 t
. = [ ] =
JLy ¢ TpdV = [f3 o r%ar /'Y, o T'Y a0 (4.44)

To evaluate the surface integrsl,; consider for g moment a potential
funetion, Y = rnYﬁ. Applying Green's theorem to two such func-

tions we find, on using (4.43),

anz

\Pl ‘1‘/2 av =f\kl 'E_-' ao

3
Jro V\Pl . V\yzd‘vf + S ==

If we now choose as the volume of 1lntegration ths interior of the
unit sphere, the integrals are readily evaluated and yleld,

provided we uss complex harmonics, Y§ = Pﬁ(cost9ﬂeim¢,

X= /Y. « V.0 = 0 for v. £ v (4,45)
i B 17 2 Yoy

where the asterisk designatss the conjugate complex, and
i - 2 . . 2
= /iy [Tae = nine) /| a0

= 2mn(n+l) . (n+mL£
2n + 1 > \u_=m)z

(4446)
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In order tc prove orthogonality of the radial functious
for fixed n end varieble x we require the boundary conditicn for

e

the toroidal modses which is jn= O at the surface oi the sphere,

by (4.39)s With this, the radial integral of (4.44) may be
evaluated from the formula, proved in the theory of Be¢ssel

functions (see,ﬁahnke-Emde, Tables of Functions)
2,. 2 3 2 .
/ Refax = B[R - 5003 0m0] (20
whlch now reduces to

[Jn(knsr %P = ~(R°/2)3__(kt RY g G R) (4.48)

The right-hand side 1s of course essentially positive in spite
of the minus sign in front.

Por the puloidal modes we again discuss first orthoge gone elity
with respect to the spherical harmonics. Using (4.43) in (4.17)
we see that 8 = arY + b V' 'Y where a and b are functions of r,
and orthogonality with respect tc the Yis follows from (4.45).
To'eétablish the orthogonality of the radial functions and the

normalization, we first derive from (4.28), (4.26) and (4.,43)

the relation

k a(I'J ) k (rjl
S 8y°8 a7 = —% | Ly R (4 49)
sl A2 R(kl_k.g-) k2 1 or E; 2 or J

where X 13 the surface integral (4.45-46). If we multiply the
bracket by k1k2 and substitute the boundary condition (4.4C; the
right~-hagnd silde is seen to varish for ny = g ppovideé howéver,
kl w kg; for k1 = k2 the formula iacomes invslid. Thus the pol-
cldal mad 8 ave orthogonal uver the interior of the sphere, Since
for given n the different radial modes have the ssme externsl field

apart from constant factors, the modes are not orthcgonal on



integration over all space. For k, = k, We use (4.25) and (4.26)
and ottain = =
r_-..ea--- = 1 I " a(l"in)l PR T e
/1817AY = ST AV - = Ty, | S IV x| ao

The first integral on the right 1s given by (4.44) but to evaluate
it by (4.47) we must now use the boundary condition (4 41). At
the same time we can simplify the bracket on the right by me ans

of the form (4.42) of this boundary condition. The result is

inside

/\8l2av = [R3/2 + nR/kis]Ji(knsR) /Iv'tl?ac (4.50)

We finally compute the overlap of the external filelds for
the same n but different values of s. Since most of the preceding
general formulas break down if applied to the outsr space, the
calculaticns are conveniently carried ocut directly frowm (4.35) on
using the generating scselar dsfined by (4.36) end (4.42). The

result 1is

/18Pav = (nRAc k,) g (K R) 1, () /197 'viPa  (4.51)

outside
For kl = k2 this corresponds exactly to the sscond term in the
bracket of (4.,50). These expressions. represent of course twice
the magnetic energy of such a mode on the inside and the outsids,
respectively. Hemce the ratio of the outside to the inside energy

-1

18 E /E. [1 + (knsn)z/zn_] (4.52)

outside’ “inside
Let us finglly obitain an estimate of the decay time of

these modes for the earth's metallic core. We shsll see lgter

that the toroidal dipol é . modes cennot be appreciably excited,

the most significant modes being the poloidsl dipoles and the tor-

v

oidal gusdrupolese Yor the formsr we have 30 (kR) = O and for the
latter jzikR} = 0., The lowest root for the dipzle 1s kR = m, the

lowest root for the toroidal gquadrupclzs 1s XR = 5.8, From (4.2)
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(4.3) the decay time 13 uo/k°. With R = 3.5 10% meters
8

]

d ¢ = 10 mkas, ons tenth of the conduciivity of ordinary iron,
we cbtain 50,000 years snd 14,000 years respectively. These
figures are of course purely nominal, since the actual decay times
are determined by the magnetic eddy diffusivity and are no doubt
much smaller, perhaps closer in order of magnitude to 1000 years,

88 may hs judged from certain features of the geomagnetic sesular

[a)
Ly

[

variation {Elsasssr,
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o« Kinematics of Induction,
We now consider the inductlicn squation in the absence of
dissipative lossceg by (2.411)
3B/t = Vx(yx B) (5;1)
or its equivalent (2.15), namely,
a¢~ip)/at = 37 « Vv (5.2)

and the corresponding integral theorem (2,14) which is

Pl
[¢}]
Py o
W
St

a/dat S/ B do =0
In terms of ths vector potential we have from (2.28)
/3t = v x (¥ x A) (5;4:)
which may be written alternately
r’.é/’t=lx(71i)'*‘ (X_-‘v)m {Se5)
and (5.3) beconmes
d/at / A ¢ d€ = O (5;6)

It is at onece apparent that the induction prccess does
not involve any material constants of the mediume The relative
rate of change of the magnetic field is of the order { v/A };
thus if we wait fcr a time during which a fluld particle travels
a distance of the order of the linear dimensions of the system,
the amplification of the fleid can tccom2 appreciabley for much
longer times the amplificaticn may become very large under con-

ditions otherwise suitable which will bhe discussed 1atsr.
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It has bsen found by Parker (1954) that the comservation
equations given above can be 1ntegratcd with respect to hthe time.
In order to avoid some of the mathematical complexities of the
full tensor-analytical treatment we shall gdopt a mixed formallesm
in which we pass from vector to tensor notation as required.

We Integrete {5.2) over a volume, getting
S €(a/as)(B/fiav = / (B » V) av (5.7)
Now we may show that
/(8- Vyav=,3yBdor (5.8)
To prove this, consider thne xu:omponents we hiave the identity

B Uy

X

Ve (v3) - v (U - B)
and the last term vanishes. On applying Gauss®! thecrem on the
right, (5.8) follows.

Let us assume that the volums »f iutegration is attached
to the fluid particlag and moves with the latter. Then Bndd‘
is an invariant by {£.3) end may be W{itten (BndOF')c where tne
superscript o will here and In the sequel.designate the values
of variables at an initial instant, t = 0. Thus we shall write
B°, ¥°, r° for f£ic12, velscity, snd position pertianing to a
partiecle at time t = Q. This is sssentially the Lagrangian method

of hydrodynamics where ths varliables referring to time t ars

considered as fuuctions of the varlabvles which charécterize the

sans fiuid particle at time t = 0., Thus B, v, r are functions of
> . A o .
o .6 _3C
B’, ¥, r’ and of t3 in components we consider Bys Vy» X, 88

funictions of the Initlal velues Bg, v?, xi and of the time..ﬂﬁv

simplify the formallsm we shsll confine ourselves for the rresent
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to cartesian coordinates. We writs ?70 for the operator with :hs
= o
. compcnents 5/3x,.

o

c . - = :
No# since B do~ = B_dC ~ by (563), we see from {5.8) thatb

S (B Vvav =/ (B - %y av®

where on the right v is considered a function of the x?. Since
fav = §°23v° this gives

- <.

S is s V- @87 - V) jrav = 0

)

Here we can equate the integrand to zero 8ince the volume of

integration is arbitrary. If we substitute in (S5.7) we find
C 7,50 -
a/at(B/e) = [(B°/¢°) « WV ]x (5.9)
This integrates to
0 ;0 [,.0 50 07- O\
B -B/f = |(B/) NV jr-r)
: o] 0 0,4,_0 :
But since B = (B” U ")r . identiallly, this reduces to
B5/¢2=[(8°/¢%) - U°I (5.10)
which is the desired integral, expressing B at time t in terms of
’§° and the kinematical prcperties of the fluid.
W9 next discuss the conservatlion theorem for the vector

3*) : . o) o s e
poteintlal,’ Bgquation [5.5) is closely reclated to a well-known

vector-analytical identity. If we let

- 5 ’ 4 " p -
\%Z4 (¥ - .‘1) - [‘7(}{, —‘5)3 v=conste + L\' & A)jk=const. (5.11)
. w3 find readily that (5.£) may be written
dA/dt = [V(Y« L) .&)Jvzconst, (5012)

For sesverali of ths

T "of this =section the
authcr 1s indebte

2
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If we substitute (5.12) into (5.11) we get
. da/dt = -Ax (U xv) - (A« V)y+ VW (5.13)

where Y = y e A may usually be ignored for the reasons explalined
in Sec. 3. These exprzssions may e greatliy 51mpLified on using

tensor notation, By viture of (5.11) the relations {5.i2) and

{5,13) become

I t
AA /A= — S « [2aa /e )
\.‘.“i/ A v A vk\v k/ U.l-i/
k

(5.14)
..}f{:Ak( avk/‘axi) + a\y/axi

To obtain the time-integral of the conservation equation it is

best to start over again from (5.6)_Which may be integrated

directly gziving, in tensor notatilon,

- A dc } =0 (5.15)

> x
: Agdc,
But
= }I{Tdck( axZ/axk)

On substituting this into (5.15) the integrand must be the

gradient of a scalars
. :
Ay = 2 k(3 /axy) + By /ex, (5.16)

wiiich is the desircd integral for Az 1t may be compgred with the

. )
corresponding formula (5.10) for B which, in the pressent notatior,
reads

By/f = 2 (B/F° )3 /any) (5.17)

l-l
f.D
O

If we drop the gradlent term in (5.16), we obtalin a simple re

on forrming the scalar product of A and B/P, namely,

3



v A -B/2 =4 . 3%/0°% (d/dt)(A - B/f) = O (5.18)
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? - So far we have confined ourselves to cartesian coordinates.

For reference purposes we give the expression of the preceding
integral theorems in cylindrical znd in spherical polar, coordinetes,
We shall omit the density £3 to reintroduce it. it !s werely nec-

i o e S S
essary to replace B by B/ and E° by B”/f". The calculations are
straightfcrward differential georetry and need not be cdescribed.

In cylindrical coordinates, £, ¢, z (where § = (xz + y?‘)l/2 is of

course not to be confounded with the density) the field transforms as

afY .o 1 3f o 3y Lo
B, =28 g9 4 L 3F po . 35 g°
£ 390 7 PO 37 ¢ 320 *
B, =¢2£ 2, £. 30 g° 4030, p (5.19)

® T as° % 5° 3¢° ¢ 32° 7

3z 0 l1 3z .o 3z o
- B, = ~—— Bg + === —— B, + —— B
z - 50 ¥ 7 e 20° 9 328 2

s and the vector potential as

= 3i? .0 , 00 9 o _ 3z ,0
A~ 3y 5 150 5 Ay T BE A,

~ 13 0, £°23¢° 0 .12z 0 e
A¢ ?'56- A> + ¢ > A¢ '36— Az {5.20)
aS’O o) ° oz

o o 1 ar o 1 aor o
B = i 4 e s BT B
. & ar” % rY P il r®eins® BQO ¢
Be=r 22 B0 + L. 2% g0, 2 350 5.0
ar r O r°gin® 9 ®

B, = r stnw2®- 50 4 Zoln?de 5, r slnif 39 52
¢ or 1 o~ r°sini® a¢ ¢
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and for ths vector pctentizl
A, = %%3 “g + p° %ﬁg A;_* pCsine® E%i A;
A&=]F%I:;*i*§':'§§*3.*ﬁ%géaoag (5;22)

o

= 1 ar° o, r 3% .o r°sins 3¢” ,0
A(p T v sinuv-90 A, T g sIind3¢ A t T s 1) Acp

In the Laggrangian formulztion of fluid motion we are cowoaned

witlh the trajectories of the fluid particles,
(r”, ©) (5.23)

Glven these three relagtionships we can compute the partial dsv-
iatives appearing in the preceding formulas, As a rule, however,
we do not start from a set of trajectories but from a veloclty
rleld, ijs t), corresponding more closely tc the Bulerian polnt
of viewr, If the fluid motion is stationary we have Qx/at =0
and the trajectories (5.23) are the solutions ol the differential
equations
dr/dt = y(r, }:o) (5.24)

where 1t 1s assumed that the initial positions of the psriicles
may appear &S parame ters.

We may inquire into cases in whicn (5.24) can be inte-

grat=d by general methods. One such case is

. o
ax/dt = v (x, xi) , dy/at = Vy(y, xz)

(1526,
dz/at = v _(z, x;)
The integratlon can be carried ocut at once in the form
e dx/'.'x. = dy,/vy = /[ az/fv, (5.28)
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Wwhence the trajectories (5.23) follow by Inversiom of the
functionai relationship betveen t and x, etc., Now the dif-
ferential equations (5.25) are purely algebraic pelapionships
with respect to the dependence of the X, upon tne xi, hence these
equations and thelr integrals may be applied to curvilinear co-
ordinates without further complications., Among the sclutions are
in particular helical trajectories such as a cylindricgl hellx or
a helix winding along a cone. Some of these motions will sppear
in our later analysis.

In order to get a clearer though somewhat elementary con-
ception of amplificatory processes we next discuss the effects
of induction for a field tinat is homngeneous over some reglon of
space.s By (5.17) the deformestion of the field depends only on
the components axi/ax; of the strain tenszcr, (Th;s serminclogy
agrees with the conventlonal definition of straing the strains
are here finite for finite times.) If, as usual, we diéregard a
pure rotation of the fluid as if solidified (in which case 1it¢ is
readlly shown that the field rotates with the fluild) we are left
with a symmeirical straln ternsor which may be decompcssd into a
pure dilatation {expansion or compression) and a pure shear.
Consider first a pure sShearing strain. We may in this case

assume the fluid tc bhe incompressible., If we let the original

field be in the z-direction and the fluid mction in the x-direction

(5617) reduces to

= 0 - A =) c S— T '. \
ESs Bz(ax/aao) , B_=0, E =3B (5.27)

The field energy 1s

1/2 B° = 1/2 (B {1 + (ax/az°)2] (5.28)

id




The field increases linearly with the strain. We see that ampli-

.‘\_{g;“ %“u 7 SR

\ fication of a field occurs whenever a velocity shear fisld is
superposed perpendicularly uvon en existing magnetic field. <The
amplification is linear in time for a stationary motion as sppears

if we wWrite the first of (5.27) in the form

R = B® ; - /3
B SUEE (avx/oz)

This is 1llustratsd in F31 il

B st R R

e which shows on the left the velo-

¥
¥

clty profile and on the right the "stretching" of the original .
(@ashed) magnetic llnes of fcrce in the x-direction. 1In principle,
an ampiificatory process of this kind may be continued indefinitely,

especially if the velocity fieléd is circular (Sec. 6) rather than

along straight lines.
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) alweys gives an increase of the field energy. In order %o
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see what happens to the energy in more general cases,; let us return
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to (5.17) and transform the stress tensor to diagonal form by a
suitable rectation of the cartesian axes to which the =y refer
(we leave the axes to which the xg refer unchanged). Let B, now

o gt
refer to the cumponents of B in the new axes (the B, remaining

e

urchanged). If 61 are the elements of the diagonaglized stress

tensor the energy becomes

1/2 3 8BS = 1/2 L(B‘i)"g‘i (5.29)
b [ 1

wheresas thse condition of incompressibility (pure sheear) merely
requires :E: C.i = 0, Now {5.29) can correspond to s decrease or
on increase of the magnsatic energy, depending on the magnitude
of the Si, but for sufficiently large strains there wiil be an
increase. This tendency of the msgnetic energ& toward incresse
is in the long run offset by thes actlon of the pondevomotive
forces (2.,17) waen they grow large as the fleld incresses: By a
well-known principle these Pforces act always in such a way that
they in turn tend to decrease the magnetic field esnergy. (As
pointed out ilready. the dynsmo theory is nct based upon a trend
toward statistical eyuilibrium hereby implisd, but on certain
general dynamical principles which will be discuseéd later.)

Consider the case of a pure dilgtaticn (expansion or con-
traction) in the sbsence of shsar. Lot B° Y& in the z-direction
and gssume for simplicity that ihe stress tensor 1s diagonal

along the cartesian axcs given. Then (5.17) reduces to

B, = (?,/,f")zs; (3z/3z°) (5.30)

We may exenpiify this by a gas cloud containing a homogeneous

nagnetic field (for instance a cloud nf ilonized gas shot out by



the sun) expanding intu a vacuume Thne total magnetic energy of

myiﬂﬁlw £s.

= the homogenacus cloud 15 proportional to B2/J°e If we let the
cloud expand laterally, constraining ihe rarticles so that they

cannot mcve In the z-direction, the magnetic snergy diminishes

proportional to f; 1f the cloud i: uprevented from latersl expansion
{ and.expands only slong tha z-axis, the magnetic energy goes as
-1
4 s thus 1t would in

ncrsase on expansiong if the cloud expands
latsrally and contracts longitudinally {as suggested by the direction
of the Maxwellian stresses) in such a way that the density remsins
unchanged, the magnetic energy changes.as (Az)2 where Az is the
change in extension in the z-direction. For a gas, the internsal

thormal energy chenges on expansion as gYLI where Y 1s the rati

o

of the specific hsats., Inder suitavle constraints the magnetic

R energy may thus incrense ot the expense of the thermal energy. We

might remark that for a volume with a homogeneous magnetic field
. the ponderomotive forces (2.17) vanish on th: insidej they appe&ar
as stresses on the boundary of the volume and are transmibbsd O

the inside through hydrostatic pres: res,.
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